Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 42, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575961

RESUMO

African Swine Fever virus (ASFV), the causative agent of African swine fever, is a highly lethal hemorrhagic virus affecting domestic pigs and wild boars. The primary target cells for ASFV infection are porcine alveolar macrophages (PAMs), which are difficult to obtain and maintain in vitro, and less subjective to genetic editing. To overcome these issues and facilitate ASFV research, we obtained a subclonal cell line PK1-C5 by subcloning LLC-PK1 cells that support stable ASFV proliferation. This consequential cell line exhibited high ASFV infection levels and similar viral growth characteristics to PAMs, while also allowing high-efficiency genomic editing through transfection or lentivirus transduction of Cas9. Taken together, our study provided a valuable tool for research aspects including ASFV-host interactions, pathogenicity, and vaccine development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Sus scrofa , Linhagem Celular , Rim
2.
J Virol ; 98(1): e0123923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38099687

RESUMO

Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.


Assuntos
Infecções por Coronavirus , Coronavirus , 60608 , Animais , Humanos , Camundongos , Antígenos CD13/genética , Coronavirus/classificação , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Deltacoronavirus , Vírus da Hepatite Murina/fisiologia , Suínos , Vírus da Gastroenterite Transmissível/genética , Tirosina , Replicação Viral/fisiologia , 60608/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686137

RESUMO

The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes viral encephalitis in humans, pigs and other mammals across Asia and the Western Pacific. Genetic screening tools such as CRISPR screening, DNA sequencing and RNA interference have greatly improved our understanding of JEV replication and its potential antiviral approaches. However, information on exon and intron mutations associated with JEV replication is still scanty. CRISPR-Cas9-mediated cytosine base editing can efficiently generate C: G-to-T: A conversion in the genome of living cells. One intriguing application of base editing is to screen pivotal variants for gene function that is yet to be achieved in pigs. Here, we illustrate that CRISPR-Cas9-mediated cytosine base editor, known as AncBE4max, can be used for the functional analysis of calreticulin (CALR) variants. We conducted a CRISPR-Cas9-mediated cytosine base editing screen using 457 single guide RNAs (sgRNAs) against all exons and introns of CALR to identify loss-of-function variants involved in JEV replication. We unexpectedly uncovered that two enriched sgRNAs targeted the same site in intron-2 of the CALR gene. We found that mutating four consecutive G bases in the intron-2 of the CALR gene to four A bases significantly inhibited JEV replication. Thus, we established a CRISPR-Cas9-mediated cytosine-base-editing point mutation screening technique in pigs. Our results suggest that CRISPR-mediated base editing is a powerful tool for identifying the antiviral functions of variants in the coding and noncoding regions of the CALR gene.


Assuntos
Calreticulina , Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Animais , Humanos , Antivirais , Calreticulina/genética , Sistemas CRISPR-Cas/genética , Citosina , Vírus da Encefalite Japonesa (Espécie)/genética , Edição de Genes , Íntrons/genética , Mamíferos , Mutação , RNA Guia de Sistemas CRISPR-Cas , Suínos
4.
ACS Synth Biol ; 12(10): 2877-2886, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37729559

RESUMO

The development of a contamination-free and on-site nucleic acid detection platform with high sensitivity and specificity but low-cost for the detection of pathogenic nucleic acids is critical for infectious disease diagnosis and surveillance. In this study, we combined the recombinase-aided amplification (RAA) with the exonuclease III (Exo III)-assisted signal amplification into a platform for sensitive and specific detection of nucleic acids of African swine fever virus (ASFV). We found that this platform enabled a naked eye visual detection of ASFV at a detection limit as low as 2 copies/µL in 30 min. As expected, no cross-reactivity was observed with other porcine viruses. In addition, to avoid aerosol contamination, a one-tube RAA-Exo III colorimetric assay was also established for the accurate detection of ASFV in clinical samples. Taken together, we developed a rapid, instrument-free, and low-cost Exo III-assisted RAA colorimetric-assay-based nucleic acid detection platform.


Assuntos
Vírus da Febre Suína Africana , Ácidos Nucleicos , Animais , Suínos , Sensibilidade e Especificidade , Colorimetria , Ácidos Nucleicos/genética , Recombinases , Técnicas de Amplificação de Ácido Nucleico
5.
Int J Biol Macromol ; 250: 125962, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499712

RESUMO

Porcine epidemic diarrhoea (PED) caused by the porcine epidemic diarrhoea virus (PEDV) is the most devastating disease in the global pig industry due to its high mortality rate in piglets. The host factors critical for PEDV replication are poorly understood. Here, we designed a pooled African green monkey genome-scale CRISPR/Cas9 knockout (VeroCKO) library containing 75,608 single guide RNAs targeting 18,993 protein-coding genes. Subsequently, we use the VeroCKO library to identify key host factors facilitating PEDV infection in Vero E6 cells. Several previously unreported genes associated with PEDV infection are highly enriched post-PEDV selection. We discovered that knocking out the tripartite motif 2 (TRIM2) and the solute carrier family 35 member A1 (SLC35A1) inhibited PEDV replication. Virtual screening and molecular docking approaches showed that chem-80,048,685 (M2) s ignificantly inhibited PEDV attachment and late replication by impeding SLC35A1. Furthermore, we found that knocking out SLC35A1 in Vero E6 cells upregulated a disintegrin and metalloprotease protein-17 (ADAM17) by splicing porcine aminopeptidase N (pAPN) and angiotensin-converting enzyme 2 (ACE2) ectodomains to reduce PEDV-infection in a CMP-Sialic Acid (CMP-SA) cell entry-independent manner. These findings provide a new perspective for a better understanding of host-pathogen interactions and new therapeutic targets for PEDV infection.

6.
ACS Synth Biol ; 12(7): 2051-2060, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37432138

RESUMO

The Rapid Visual CRISPR (RAVI-CRISPR) assay employs Cas12a and Cas13a enzymes for precise gene detection in a sample. However, RAVI-CRISPR is limited in single-tube multiplex detection applications due to the lack of specific single-strand (ss) DNA-fluorescently quenched (ssDNA-FQ) and RNA-fluorescently quenched (ssRNA-FQ) reporter cleavage mechanisms. We report the development of a sensitive and specific dual-gene Cas12a and Cas13a diagnostic system. To optimize the application for field testing, we designed a portable multiplex fluorescence imaging assay that could distinguish test results with the naked eye. Herein, dual gene amplified products from multiplex recombinase polymerase amplification (RPA) were simultaneously detected in a single tube using Cas12a and Cas13a enzymes. The resulting orthogonal DNA and RNA collateral cleavage specifically distinguishes individual and mixed ssDNA-FQ and ssRNA-FQ reporters using the green-red-yellow, fluorescent signal conversion reaction system, detectable with portable blue and ultraviolet (UV) light transilluminators. As a proof-of-concept, reliable multiplex RAVI-CRISPR detection of genome-edited pigs was demonstrated, exhibiting 100% sensitivity and specificity for the analysis of CD163 knockout, lactoferrin (LF) knock-in, and wild-type pig samples. This portable naked-eye multiplex RAVI-CRISPR detection platform can provide accurate point-of-care screening of genetically modified animals and infectious diseases in resource-limited settings.


Assuntos
Sistemas CRISPR-Cas , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Suínos , Sistemas CRISPR-Cas/genética , Bioensaio , DNA de Cadeia Simples/genética , RNA , Técnicas de Amplificação de Ácido Nucleico
7.
mBio ; 14(4): e0089923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37377422

RESUMO

Coronaviruses (CoVs), which pose a serious threat to human and animal health worldwide, need to hijack host factors to complete their replicative cycles. However, the current study of host factors involved in CoV replication remains unknown. Here, we identified a novel host factor, mammalian lethal with sec-13 protein 8 (mLST8), which is a common subunit of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), and is critical for CoV replication. Inhibitor and knockout (KO) experiments revealed that mTORC1, but not mTORC2, is essential for transmissible gastroenteritis virus replication. Furthermore, mLST8 KO reduced the phosphorylation of unc-51-like kinase 1 (ULK1), a factor downstream of the mTORC1 signaling pathway, and mechanistic studies revealed that decreased phosphorylation of the mTORC1 downstream factor ULK1 promoted the activation of autophagy, which is responsible for antiviral replication in mLST8 KO cells. Then, transmission electron microscopy indicated that both mLST8 KO and autophagy activator inhibited the formation of double-membrane vesicles in early viral replication. Finally, mLST8 KO and autophagy activator treatment could also inhibit the replication of other CoVs, indicating a conserved relationship between autophagy activation and CoV replication. In summary, our work reveals that mLST8 is a novel host regulator of CoV replication, which provides new insights into the mechanism of CoV replication and can facilitate the development of broad-spectrum antiviral drugs. IMPORTANCE CoVs are highly variable, and existing CoV vaccines are still limited in their ability to address mutations in CoVs. Therefore, the need to improve our understanding of the interaction of CoVs with the host during viral replication and to find targets for drugs against CoVs is urgent. Here, we found that a novel host factor, mLST8, is critical for CoV infection. Further studies showed that mLST8 KO inhibited the mTORC1 signaling pathway, and we found that autophagy activation downstream of mTORC1 was the main cause of antiviral replication in mLST8 KO cells. Autophagy activation impaired the formation of DMVs and inhibited early viral replication. These findings deepen our understanding of the CoV replication process and provide insights into potential therapeutic applications.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Antivirais/farmacologia , Autofagia/genética , Mamíferos/metabolismo
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 314-321, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36762499

RESUMO

As the essential tissue for sperm maturation and storage, the epididymis secretes a number of tissue-specific proteins to exert its functions. Among these proteins, epididymal lipocalins have been intensively studied because of their epididymis-specific expression pattern and clustered genomic organization. In this study, rLcn13, a member of the rat epididymal lipocalin family, is identified and elaborately characterized. The cDNA sequence of rLcn13 consists of 719 nucleotides and encodes a 176 amino-acid protein with a predicted N-terminal signal peptide of 19 amino acids. rLcn13 shares a similar genomic structure and predicted 3D protein structure with other lipocalin family members. A recombinant rLCN13 mature peptide of 157 amino acids is expressed and purified, which is used to raise a polyclonal antibody against rLCN13 with high specificity and sensitivity. Northern blot, western blot, and immunohistochemistry assays reveal that rLcn13 is an epididymis-specific gene which is expressed predominantly in the initial segment and proximal caput epididymis and influenced by androgen. The rLCN13 protein is modified by N-glycosylation and secreted into the epididymal lumen, and then binds to the acrosome region of the sperm. Our data demonstrate that rLcn13 exhibits a specific temporospatial expression pattern and androgen dependence, indicating its potential roles in sperm maturation.


Assuntos
Androgênios , Lipocalinas , Ratos , Masculino , Animais , Sequência de Aminoácidos , Lipocalinas/genética , Lipocalinas/metabolismo , Androgênios/metabolismo , Epididimo , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Mol Biotechnol ; 65(2): 263-272, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35840848

RESUMO

Sex selection technologies have immensely impacted swine production globally. Conventional earlier embryo sex identification methods require professional technicians and sophisticated laboratory instruments. Rapid on-site gender identification of porcine embryos and pork products remains challenging. In this study, we developed a CRISPR/Cas12a-based fluorescence visualization point-of-care sex determination test that is rapid, accurate and easy to implement on-site. The CRISPR/Cas12a assay coupled with either the polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP) employs precisely designed primers and single-guide RNAs targeting the sex-determining region Y (SRY) and the zinc finger protein X-linked (ZFX) genes. PCR and LAMP amplicons were cleaved with the subsequent generation of fluorescing products detectable with portable blue and ultraviolet light transilluminators. Approximately two copies per microliter of the ZFX and SRY genes were detected using the RApid VIsual CRISPR (RAVI-CRISPR) assay. This method is a sensitive, inexpensive, versatile, and point-of-care test. The technology has other potential applications like determining the sex of diverse livestock species, detecting livestock disease-causing pathogens and evaluating the quality of meat products.


Assuntos
Produtos da Carne , Carne Vermelha , Suínos/genética , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase , Primers do DNA/genética , Sistemas CRISPR-Cas , Sensibilidade e Especificidade
11.
Nucleic Acids Res ; 51(D1): D1312-D1324, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300629

RESUMO

With the exponential growth of multi-omics data, its integration and utilization have brought unprecedented opportunities for the interpretation of gene regulation mechanisms and the comprehensive analyses of biological systems. IAnimal (https://ianimal.pro/), a cross-species, multi-omics knowledgebase, was developed to improve the utilization of massive public data and simplify the integration of multi-omics information to mine the genetic mechanisms of objective traits. Currently, IAnimal provides 61 191 individual omics data of genome (WGS), transcriptome (RNA-Seq), epigenome (ChIP-Seq, ATAC-Seq) and genome annotation information for 21 species, such as mice, pigs, cattle, chickens, and macaques. The scale of its total clean data has reached 846.46 TB. To better understand the biological significance of omics information, a deep learning model for IAnimal was built based on BioBERT and AutoNER to mine 'gene' and 'trait' entities from 2 794 237 abstracts, which has practical significance for comprehending how each omics layer regulates genes to affect traits. By means of user-friendly web interfaces, flexible data application programming interfaces, and abundant functional modules, IAnimal enables users to easily query, mine, and visualize characteristics in various omics, and to infer how genes play biological roles under the influence of various omics layers.


Assuntos
Bases de Dados Genéticas , Animais , Regulação da Expressão Gênica , Genoma , Bases de Conhecimento , Software , Multiômica
12.
Antioxidants (Basel) ; 11(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139865

RESUMO

Aflatoxin B1 (AFB1) is amongst the mycotoxins commonly affecting human and animal health, raising global food safety and control concerns. The mechanisms underlying AFB1 toxicity are poorly understood. Moreover, antidotes against AFB1 are lacking. Genome-wide CRISPR/Cas9 knockout screening in porcine kidney cells identified the transcription factor BTB and CNC homolog 1 (BACH1) as a gene required for AFB1 toxicity. The inhibition of BACH1 expression in porcine kidney cells and human hepatoma cells resulted in increased resistance to AFB1. BACH1 depletion attenuates AFB1-induced oxidative damage via the upregulation of antioxidant genes. Subsequently, virtual structural screening identified the small molecule 1-Piperazineethanol, α-[(1,3-benzodioxol-5-yloxy)methyl] -4-(2-methoxyphenyl) (M2) as an inhibitor of BACH1. M2 and its analogues inhibited AFB1-induced porcine and human cell death in vitro, while M2 administration significantly improved AFB1-induced symptoms of weight loss and liver injury in vivo. These findings demonstrate that BACH1 plays a central role in AFB1-induced oxidative damage by regulating antioxidant gene expression. We also present a potent candidate small-molecule inhibitor in developing novel treatments for AFB1 toxicity.

13.
Genes (Basel) ; 13(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36140672

RESUMO

The porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. However, there is no consensus on the primary receptor associated with the PEDV invasion of host cells. An increasing number of studies have reported that PEDV invading host cells may require collaboration between multiple receptors and to better understand the virus-host interaction during PEDV entry, surface plasmon resonance (SPR) assays are performed to investigate relevant host factors interacting with PEDV spike-1 protein (S1) in Vero and IPEC-J2 cell membranes. Subsequently, the rabbit anti-PEDV S1 polyclonal antibody is used as bait to recognize the complexes of IPEC-J2 membrane proteins with or without PEDV infection, followed by detection using liquid chromatography with tandem mass spectrometry (LC-MS-MS). Our results show that 13 and 10 proteins interacting between the S1 protein and plasma membrane protein of Vero or IPEC-J2 can be identified. More specifically, a total of 11 differentially expressed interacting proteins were identified in IPEC-J2 membrane proteins after PEDV infection, compared to the uninfected group. Furthermore, we found that the differentially interacting protein CCR4-NOT complex 2 (CNOT2), identified in PEDV S1 with plasma membrane proteins of Vero cells, is involved in viral infection. The results show that the knockout of CNOT2 significantly inhibits PEDV replication in vitro. These data provide novel insights into the entry mechanism of PEDV.


Assuntos
Vírus da Diarreia Epidêmica Suína , Animais , Chlorocebus aethiops , Proteínas de Membrana , Vírus da Diarreia Epidêmica Suína/genética , Coelhos , Suínos , Células Vero
14.
Virus Res ; 319: 198869, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35842016

RESUMO

Early and rapid detection of Japanese encephalitis virus (JEV) is necessary for timely preventive and control measures. However, JEV RNA detection remains challenging due to the low level of viremia. In this study, a RApid VIsual CRISPR (RAVI-CRISPR) assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and CRISPR/Cas12a targeting was developed for easy detection of JEV in the field. We showed successful detection of 8.97 or more copies of the C gene sequence of JEV RNA within approximately 60 min. This assay also displayed no cross-reactivity with other porcine pathogens. We applied our one-tube RAVI-CRISPR assay to 18 brain tissue sample for JE diagnosis. The results from both fluorescence intensity measurements and directly naked-eye visualization were consistent with those from real-time PCR analysis. Taken together, our results showed that one-tube RAVI-CRISPR assay is robust, convenient, sensitive, specific, affordable, and potentially adaptable to on-site detection or surveillance of JEV in clinical and vector samples.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Doenças dos Suínos , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA , RNA Viral/análise , RNA Viral/genética , Transcrição Reversa , Sensibilidade e Especificidade , Suínos
15.
Virol Sin ; 37(4): 591-600, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35688418

RESUMO

Pseudorabies virus (PRV), an etiological agent of pseudorabies in livestock, has negatively affected the porcine industry all over the world. Epithelial cells are reported as the first site of PRV infection. However, the role of host proteins and its related signaling pathways in PRV replication is largely unclear. In this study, we performed a quantitative phosphoproteomics screening on PRV-infected porcine kidney (PK-15) epithelial cells. Totally 5723 phosphopeptides, corresponding to 2180 proteins, were obtained, and the phosphorylated states of 810 proteins were significantly different in PRV-infected cells compared with mock-infected cells (P â€‹< â€‹0.05). GO and KEGG analysis revealed that these differentially expressed phosphorylated proteins were predominantly related to RNA transport and MAPK signaling pathways. Further functional studies of NF-κB, transcription activator factor-2 (ATF2), MAX and SOS genes in MAPK signaling pathway were analyzed using RNA interference (RNAi) knockdown. It showed that only ATF2-knockdown reduces both PRV titer and viral genome copy number. JNK pathway inhibition and CRISPR/Cas9 gene knockout showed that ATF2 was required for the effective replication of PRV, especially during the biogenesis of viral genome DNA. Subsequently, by overexpression of the ATF2 gene and point mutation of the amino acid positions 69/71 of ATF2, it was further demonstrated that the phosphorylation of ATF2 promoted PRV replication. These findings suggest that ATF2 may provide potential therapeutic target for inhibiting PRV infection.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Células Epiteliais , Herpesvirus Suídeo 1/genética , Proteômica , Suínos , Replicação Viral
17.
Genes (Basel) ; 13(5)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627121

RESUMO

Lumpy skin disease (LSD) is a severe and highly infectious pox disease of cattle caused by the lumpy skin disease virus (LSDV). To facilitate early control of LSD, this study aimed to develop a new rapid on-site LSDV detection method using an orf068 gene-based recombinase polymerase amplification assay (RPA) coupled with a CRISPR-Cas12a-based fluorescence assay (RPA-Cas12a-fluorescence assay). The results showed that the sensitivity of our RPA-Cas12a-fluorescence assay for detecting LSDV orf068 gene reached 5 copies/µL with plasmid as a template, and 102 TCID50/mL with viral genomic DNA as a template. No cross-reaction with other common bovine viruses was observed. Further, an on-site RPA-Cas12a-fluorescence assay of 40 clinical samples from cattle with or without LSD showed a diagnostic sensitivity of 96.3% (95% CI: 81.0-99.9%) and specificity of 92.31% (95% CI: 62.1-99.6%), which was close to those of the quantitative PCR assay. Therefore, our RPA-Cas12a-fluorescence assay has promising prospects in on-site rapid LSDV detection.


Assuntos
Vírus da Doença Nodular Cutânea , Animais , Bovinos , Sistemas CRISPR-Cas , DNA Viral/genética , Vírus da Doença Nodular Cutânea/genética , Nucleotidiltransferases/genética , Recombinases/genética , Recombinases/metabolismo , Sensibilidade e Especificidade
18.
Genes (Basel) ; 13(5)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35627297

RESUMO

The growing demand for and supply of meat and meat products has led to a proportional increase in cases of meat adulteration. Adulterated meat poses serious economic and health consequences globally. Current laboratory methods for meat species identification require specialized equipment with limited field applications. This study developed an inexpensive, point-of-care Loop-Mediated Isothermal Amplification (LAMP)-CRISPR/Cas12a colorimetric assay to detect meat species using a Texas Red-labelled single-strand (ssDNA) reporter. As low as 1.0 pg/µL of the porcine NADH4, the chicken NADH dehydrogenase subunit 2 (ND2) and the duck D-loop genes was detectable under white, blue and ultraviolet light. The test turnaround time from DNA extraction to visualization was approximately 40 min. The assay accurately detected pure and mixed-meat products in the laboratory (n = 15) and during a pilot point-of-care test (n = 8) in a food processing factory. The results are 100% reproducible using lateral flow detection strips and the real-time PCR detection instrument. This technology is fully deployable and usable in any standard room. Thus, our study demonstrates that this method is a straightforward, specific, sensitive, point-of-care test (POCT) adaptable to various outlets such as customs, quarantine units and meat import/export departments.


Assuntos
Produtos da Carne , Animais , Galinhas/genética , Patos , Carne/análise , Testes Imediatos , Suínos
19.
Genes (Basel) ; 13(5)2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35627307

RESUMO

Genetically modified pigs have shown considerable application potential in the fields of life science research and livestock breeding. Nevertheless, a barrier impedes the production of genetically modified pigs. There are too few safe harbor loci for the insertion of foreign genes into the pig genome. Only a few loci (pRosa26, pH11 and Pifs501) have been successfully identified to achieve the ectopic expression of foreign genes and produce gene-edited pigs. Here, we use CRISPR/Cas9-mediated homologous directed repair (HDR) to accurately knock the exogenous gene-of-interest fragments into an endogenous CKM gene in the porcine satellite cells. After porcine satellite cells are induced to differentiate, the CKM gene promoter simultaneously initiates the expression of the CKM gene and the exogenous gene. We infer preliminarily that the CKM gene can be identified as a potential muscle-specific safe harbor locus in pigs for the integration of exogenous gene-of-interest fragments.


Assuntos
Sistemas CRISPR-Cas , Genoma , Animais , Genoma/genética , Gado/genética , Músculos , Regiões Promotoras Genéticas , Suínos/genética
20.
Viruses ; 14(4)2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458562

RESUMO

Porcine enteric coronaviruses have caused immense economic losses to the global pig industry, and pose a potential risk for cross-species transmission. The clinical symptoms of the porcine enteric coronaviruses (CoVs) are similar, making it difficult to distinguish between the specific pathogens by symptoms alone. Here, a multiplex nucleic acid detection platform based on CRISPR/Cas12a and multiplex reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) was developed for the detection of four diarrhea CoVs: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). With this strategy, we realized a visual colorimetric readout visible to the naked eye without specialized instrumentation by using a ROX-labeled single-stranded DNA-fluorescence-quenched (ssDNA-FQ) reporter. Our method achieved single-copy sensitivity with no cross-reactivity in the identification and detection of the target viruses. In addition, we successfully detected these four enteric CoVs from RNA of clinical samples. Thus, we established a rapid, sensitive, and on-site multiplex molecular differential diagnosis technology for porcine enteric CoVs.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Alphacoronavirus , Animais , Sistemas CRISPR-Cas , Coronavirus/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Vírus da Diarreia Epidêmica Suína/genética , DNA Polimerase Dirigida por RNA/genética , Sensibilidade e Especificidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...